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ABSTRACT 
Melting of pure metal in presence of turbulent natural convection with Rayleigh number ranging from 106 

to 109 has been studied numerically. The governing equations are formulated in terms of stream 
function-vorticity-temperature and the moving distorted solid/liquid interface is tracked using body-fitted 
coordinates. The turbulent flow is taken into account using an algebraic eddy-viscosity model with Prandtl's 
mixing length. Results indicate that turbulent natural convection plays a more significant role than laminar 
flow in the process of melting. Heat transfer and melting rates are significantly increased and a correlation 
for the average Nusselt number at the heated wall in the quasi-steady melting regime is proposed. 
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N O M E N C L A T U R E 
c specific heat of liquid εM eddy viscosity (vl/αl) 
H height of the cavity εH eddy viscosity of heat 
g i,j geometric coefficients in (2) θ dimensionless temperature 
Δh latent heat of fusion [(T − Tf)/(Tw −Tf)] 
l Prandtl 's mixing length ω vorticity (∂v/∂x − ∂u/∂y) 
L width of the cavity ψ stream function 
m general coefficient in (1) v kinematic viscosity 
Nu local Nusselt number ξ transformed coordinate 

average Nusselt number η transformed coordinate 
Pr Prandtl number (v l/α l) ratio ρs/ρl 
Ra Rayleigh number [gβ(Tw − T f)H3/vα] ρ general coefficient in (1) 
S source term in (1) Γ general coefficient in (1) 
Ste Stefan number [c(Tw − Tf /Δh ] f general dependent variable 
t dimensionless time (t*αl/H) 
Tf fusion temperature Superscript 
Tw temperature of the heated wall * indicates dimension quantities 
U contravariant velocity in ξ direction 
V contravariant velocity in η direction Subscript 
Vf molten volume reaction l liquid 
x dimensionless coordinate (x*/H) f fusion point 
y dimensionless coordinate (y*/H) w heated wall 
α thermal diffusivity 

0961-5539/92/030235-08$2.00 Received July 1991 
© 1992 Pineridge Press Ltd Revised January 1992 



236 YONGKE WU AND MARCEL LACROIX 

INTRODUCTION 
Melting and solidification of metals is of particular interest in material processing, metallurgy, 
purification of metals, solidification of castings and ingots and various other solidification 
technologies. While undergoing phase change, the associated density gradients in a gravitational 
field can induce natural convection flows in the liquid phase. It has been shown experimentally1 

and later confirmed by numerical studies2−5 that natural convection can considerably affect the 
solid/liquid interface shape and motion during phase change. 

Over the last decade, the problem of natural convection dominated melting of low Prandtl 
number substances in enclosures has received increasing research attention. Several authors have 
conducted successfully numerical simulations of this process. Morgan2 appears to be one of the 
first authors to report on a numerical analysis of freezing and melting with convection. An 
explicit finite element method was used to study the influence of natural convection on the 
process of freezing and melting in a cylindrical cavity. A fixed grid enthalpy method was employed 
for the phase change problem. On the other hand, Webb et al.3 have reported one of the first 
studies on the problem of melting of a pure metal (low Prandtl number) inside a rectangular 
cavity. A control volume-based discretization scheme adapted for irregular geometries was 
employed. Brent et al.4 have tackled the same problem using a fixed grid enthalpy-porosity 
approach. Then, Lacroix8 solved the problem by invoking a Eulerian-Lagrangian transformation 
technique. 

In all these numerical studies, however, the convection flow was assumed to be laminar. For 
practical applications, melting and solidification of metals usually involved natural convection 
flows that are turbulent. As a result, during melting, turbulent natural convection increases even 
more the overall transport rate and hence the growth rate of the liquid phase. 

The purpose of the present study is twofold: First, a computational methodology is presented 
for the simulation of melting of a pure metal from an isothermal vertical wall driven by turbulent 
natural convection in the melt. Second, through a series of numerical experiments, the model 
is then used to examine the effect of turbulent flow in the melt on the motion and the shape of 
the solid/liquid interface and the overall heat transfer rate. 

PHYSICAL MODEL AND GOVERNING EQUATIONS 
The phase change material (PCM) is contained in a two-dimensional rectangular cavity of height 
H and width L (Figure 1) 

The PCM is assumed to be initially at its fusion temperature Tf, eliminating the need for 
solution of the energy equation in the solid. At time t = 0, the temperature of the left vertical 
wall is raised impulsively to a prescribed temperature above the fusion point, Tw>Tf. The 
horizontal walls connecting the heated wall and the solid/liquid interface are adiabatic. All walls 
form hydrodynamically no-slip boundary conditions. It is assumed that the thermophysical 
properties are constant. The Boussinesq approximation is valid; i.e., liquid density variations 
arise only in the buoyancy source term, but are otherwise neglected. Viscous dissipation is 
neglected. The liquid is Newtonian and incompressible and the flow is two-dimensional and 
turbulent. A simple Prandtl's mixing length model, for which the fluid viscosity is enhanced by 
turbulent mixing processes, is adopted. 

Upon the foregoing assumptions, the partial differential equations governing the transport of 
mass, momentum and energy may then be formulated in terms of vorticity-stream function-
temperature for a cartesian coordinate system. However, as melting proceeds, the solid/liquid 
interface moves to the right while being distorted by the uniform heat fluxes along its surface. 
As a result, the irregular time-changing shape of the solid/liquid interface will not necessarily 
coincide with grid nodes for a cartesian grid and attempts to solve the resulting finite-difference 
equations may lead to inaccurate or divergent solutions. 

To overcome these difficulties, the governing equations are readily cast from their cartesian 
reference frame to a curvilinear reference frame (ξ, η). The advantage of this transformation is 
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the fact that, in the physical plane, boundary nodes always coincide with the distorted phase 
front. In the computational space (ξ, η), the boundary conditions are then specified on straight 
boundaries. Adopting this technique5, the general dimensionless transport equation has the 
following form: 

where f is the dependent variable, S(ξ, η) is a source term, Γ is an exchange coefficient and ρ 
is a constant. These parameters are defined in Table 1. 

The geometric coefficients U, V, g11, g12, g22, g, ξt and ηt are defined as: 

The initial conditions (t = 0) are ψ = ω = θ = 0. For t > 0, the boundary conditions are given 
in Table 2. Furthermore, since no heat conduction occurs in the solid phase, all heat transferred 
to the interface is utilized for melting. Then an energy balance for the interface yields the following 
dimensionless condition for the moving boundary: 

Ra, Pr and Ste represent the Rayleigh, Prandtl and Stefan numbers respectively, is the ratio 

Table 1 Variables and parameters in equation (1) 

Function 

Stream function 

Variables: 

Vorticity 

Temperature 

f 

ψ 

ω 
θ 

ρ 

0 

1 

1 

r 
1 

1 
1 + εM/εH 

m 

1 

Pr + εM 

1 

S(Ξ, Η) 

ω 

Ra.Pr. 

0 
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Table 2 Boundary conditions for the problem 

Boundary 

Left heated wall 

Solid/liquid interface 

Top and bottom walls 

Stream function, ψ 

ψ = 0 

ψ = 0 

ψ = 0 

Vorticity, ω Temperature, θ 

θ = 1 

θ = 0 

of the solid density to the liquid density. εM is the eddy viscosity which takes the following form 
in the (ξ,η) plane: 

where l is the Prandtl's mixing length. This mixing length is usually problem dependent and is 
determined empirically. Based on previous studies for turbulent flows inside cavities, this length 
was taken as 10−2H and the ratio εM/εH = 0.9. The authors recognize the limits of the present 
algebraic eddy-viscosity turbulence model. Nevertheless, this model was retained primarily for 
its simplicity and also for limiting the CPU time. However, in the future more sophisticated 
(and more realistic) turbulence models, such as the k−ε model6, will be envisaged. 

The finite difference equations are obtained on integrating the general governing equation (1) 
over each of the control volume in the (ξ, η) plane. The linearized equations are then solved 
interatively for θ, ω and ψ using an alternating line-by-line solver. 

The overall numerical solution proceeds through a series of small time intervals during which 
the solid/liquid interface is assumed to be fixed. For each such interval, the field equations are 
solved by a fully implicit solution scheme (without neglecting the unsteady terms) in the new 
fixed domain. The solution of the field equations provides the energy fluxes at the interface after 
that time interval. The displacement of the interface can then be calculated explicitly from the 
interfacial energy balance (3) and a new solution domain is generated from the next time step. 

The present model has been successfully validated through comparisons with experimental 
data and further details may be found in References 5, 7 and 8. 

RESULTS AND DISCUSSION 
The foregoing model was used for simulating turbulent natural convection melting of a pure 
metal from an isothermal wall. Following previous studies5,7,8, the Prandtl and Stefan numbers 
were set to constant values of 0.02 and 0.042 respectively. These values are typical of a gallium 
melting system. The Rayleigh number ranged from 106 to 109. 

To avoid computational difficulties at t = 0, a very thin uniform thickness melt layer parallel 
to the heated wall was assumed to exist initially. The layer thickness was chosen such that the 
Rayleigh number based on this initial gap width was small enough so that pure conduction 
could be considered as the prevailing mechanism of heat transfer. 

Following a grid refinement study and as a compromise between cost and accuracy, the 
calculations were done with a grid size 21 × 21 by non-uniformly distributed nodes. This makes 
it possible to concentrate several grid points in the critical regions near the heated wall and the 
solid/liquid interface where large temperature gradients prevail. The total simulated dimensionless 
melting time was 1.5 with a constant time step of 5 × 10−3. The CPU time was approximately 
12 hours on an IRIS 4D-60 (33 MHz). Most of the CPU time was spent on the vorticity equation 
as a very small relaxation parameter (~0.01) ought to be employed in order to avoid possible 
divergence of the numerical scheme. 
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Figure 2 shows the time evolution of the isotherms for Ra = 106. Increments between isotherms 
are constant and equal to 0.1. The isotherm along the heated wall is θ = 1.0 and the isotherm 
along the solid/liquid interface is θ = 0.0. As expected, the solid/liquid interface, being an isotherm 
itself, always intersect the adiabatic top and bottom walls at right angles. At early times (0.05), 
heat transfer is predominated by conduction and the solid/liquid interface moves parallel to the 
vertical heated wall. After some time (0.1−0.25) convection appears and develops in the upper 
portion of the melt while conduction continues to prevail in the lower portion. Consequently, 
the interface exhibits a strong curvature in the upper portion and remains vertical in the lower 
portion. 

As melting still progresses (1.5), the recirculating eddy in the upper half of the cavity grows 
in size enhancing even more the melting rates near the top of the cavity. This recirculating eddy 
is responsible for the higher temperature gradients near the top of the solid/liquid interface 
which account for the high melt velocity there. Comparison of the isotherm maps for various 
Rayleigh numbers (Figure 3) reveals that the local temperature gradient is substantially higher 
at higher Ra. Consequently, the local melt front velocity is highest for Ra = 109. 

The isotherm plots also illustrate that the boundary-layer regime has been established for all 
Rayleigh number calculations at the dimensionless time shown. This is indicated qualitatively 
by clustered vertical isotherms along the heated wall and melt front and horizontal isotherms 
in the core of the cavity. This Figure also shows the superimposed velocity vectors. Velocities 
at the centre of the stagnant core are very low compared to those in the boundary layers, differing 
by as much as an order of magnitude. 

The time history of the local Nusselt number profile at the heated wall is shown in Figure 4 
for Ra = 106 and Ra = 108. Initially, in the conduction regime for Ra= 106, the Nusselt number 
is uniform over most of the heated wall (0.05). At the same time for Ra = 108, however, the 
convection regime has already superseded the conduction regime. As time passes, the melt cavity 
expands and the thermal resistance across the liquid layer increases. This results in a general 
decrease in the magnitude of the local Nusselt number. For Ra = 106, at t = 0.25, there is a 
plateau of locally high Nusselt number in the centre region of the heated wall. This region can 
be correlated to the height of the knee on the solid/liquid interface. Cold fluid from the melt 
front joining the boundary layer on the hot wall creates a region of locally higher heat transfer 
at the knee of the interface. As time progresses (1.5), the melt cavity becomes so large that the 
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knee on the melting front no longer has a strong local influence on the energy transport at the 
heated wall and the plateau of high Nu is suppressed. For larger Ra, the same behaviour was 
observed but at earlier times as the convective flow is stronger. 

Figure 5 illustrates the local Nusselt number profiles at the solid/liquid interface corresponding 
to those of Figure 4. The Nusselt number at the melting front is calculated from the normal 
temperature gradient V9.n along the interface contour. Again, the Nusselt number for Ra = 106 
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is seen to be nearly uniform initially (0.05) and deviates with the onset of buoyancy-induced 
fluid motion. For Ra = 108, the convective flow has already established itself at 0.05. The heat 
transfer is highest near the top of the phase front where hot fluid impinges. For larger Ra 
number, the Nusselt number is obviously larger. The magnitude of the local Nusselt number 
also decreases with time. Interestingly enough, the plateau of locally high Nusselt number for 
Ra = 106, at t = 0.25 may also be observed at the phase front. 

The average Nusselt number at the heated wall was also calculated from the converged 
temperature field for each time step in the melting process. This is shown in Figure 6. As expected, 
higher Rayleigh numbers result in an earlier departure form the pure conduction behaviour. A 
higher Ra also leads to a higher in the quasi-steady melting regime. In fact, the average 
Nusselt number changes very little with time in the quasi-steady melting regime after the natural 
convective flow is well established. It was correlated, in this regime, for all Rayleigh numbers 
studied according to the following equation: 

= 1.75Ra0.12 (5) 
This correlation for turbulent natural convection melting is quite different form those obtained 
experimentally and numerically for laminar natural convection melting3−5. For the latter, the 
heated-wall Nusselt number exhibits dependences of Ra0.26. 

Finally, the temporal variation of the molten volume fraction was determined and is depicted 
in Figure 7. As for laminar convective flows, the Vf versus t relationship for turbulent flows is 
almost linear in the quasi-steady melting regime. 

CONCLUSIONS 
Melting of a low Prandtl number substance with turbulent natural convection in the melt has 
been studied analytically. Results indicate that turbulent flow increases the overall heat transfer 
and melting rates. The average heated-wall Nusselt number exhibits dependences of Ra0.12 

markedly different from those for laminar flows. 
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